RADIOTRACERS IN FLUORINE CHEMISTRY, PART XIV. THE LABILITY OF THE FLUOROANIONS BF₄, PF₆, AsF₆, SbF₆, NbF₆ AND TaF₆ IN ACETONITRILE SOLUTION. A FLUORINE-18 RADIOTRACER STUDY 11.21

M. FOUZI GHORAB and JOHN M. WINFIELD

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ (U.K.)

SUMMARY

Fluorine-18 exchange between BF_4^- or PF_6^- and the [^{18}F]-labelled hexafluorides MoF_6 , WF_6 or UF_6 and between NbF_6^- or TaF_6 and $WF_5^{-18}F$ in acetonitrile is rapid at room temperature. Rapid ^{18}F exchange is observed also between AsF_6^- and $UF_5^{-18}F$ under identical conditions but is not observed between AsF_6^- and $MoF_5^{-18}F$ or $WF_5^{-18}F$. No ^{18}F exchange is observed between SbF_6^- and any of the three hexafluorides. On this basis SbF_6^- is the anion of choice in situations where a kinetically inert anion is required.

INTRODUCTION

Fluoroanions such as BF_4^- , PF_6^- and AsF_6^- are often used when an inert counter-anion is required in solution studies. They are kinetically inert with respect to hydrolysis in aqueous acid, although hydrolysis is catalysed by hard acids, for example, Be^{II} or Al^{III} [3]. The observation suggests that coordination to a positive centre via a fluorine ligand is possible and indeed several instances of F^- ion abstraction in solution from BF_4^- [4] or PF_6^- anion [5] have been reported under a variety of conditions.

The behaviour of many fluoroanions, for example BF₄ and EF₆ E = P, As, Sb, Nb and Ta, towards high oxidation state binary fluorides, BF_2 or MF_5 , M = P, As, Sb, Nb and Ta, in solution is well documented from n.m.r. studies. In most cases attention has been focussed on complex formation involving E-F-E or E-F-M bridges [6]. Fluorine exchange which is fast on the n.m.r. time scale has been reported in some cases but the lability of bonds in these anions has never been compared systematically using a common reference acid under identical conditions. undertaken this comparison using fluorine-18 (β^+ decay, $t_{1/2}$ = 110 min) as a radiotracer and the hexafluorides MoF₆, WF₆ and UF₆ as reference Lewis acids. The hexafluorides are very useful probe molecules for this type of investigation since their Lewis acidities are significantly weaker than those of SbF5 or AsF5 which have been used most often in previous 19 F n.m.r. investigations.

EXPERIMENTAL

Preparation of Reagents

Standard vacuum and glove-box techniques were used throughout. Binary fluorides, commercial products or prepared by F₂ fluorination of the appropriate element, were purified by distillation or sublimation immediately before use. Acetonitrile (Rathburn HPLC Grade S) was purified as described previously [7]. The pentafluorides, AsF₅, SbF₅, NbF₅ and TaF₅, were manipulated as their 1:1 adducts with MeCN, the latter being characterized by their vibrational spectra [8]. Lithium, fluoroanion salts were prepared on the 5 mmol scale from reactions between lithium fluoride (B.D.H. Optran Grade) and the appropriate binary fluoride or its MeCN adduct in MeCN at room temperature. Syntheses were carried out in Pyrex double limb

vessels fitted with P.T.F.E., Pyrex stop-cocks (J. Young). All salts were colourless and were very soluble in McCN so could be separated from unchanged LiF by decanting the solution. Samples were recrystallised from McCN before use. Their i.r. spectra contained bands due to the appropriate anion, BF_4^- , AsF_6^- , SbF_6^- or TaF_6^- [9,10]. There was no evidence for coordinated McCN. Satisfactory Raman spectra were obtained only for LiSbF6; decomposition occurred in the other cases. The salt $[Cu(NCMe)_5][NbF_6]_2$ was prepared as described previously for the TaF_6^- analogue [10] and was characterized by its spectra.

Caesium heptafluorotungstate(VI) was prepared from caesium fluoride (5.0 mmol; B.D.H. Optran Grade), WF₆ (4.0 mmol) and MeCN (5 cm³). This mixture, contained in a flamed out, double limb, Pyrex vessel, was shaken for several hours at room temperature. The solution was decanted and a colourless solid isolated after removal of volatile material. The i.r. and Raman spectra of the solid contained strong bands at 620 and 714 cm⁻¹ respectively, assigned to the v_3 and v_1 modes of the D_{5h} , WF₇ anion [11]. No bands due to coordinated MeCN were observed.

The preparation of activated caesium [18 F]-fluoride has been described elsewhere [12]. [18 F]-Fluorine labelled MoF₆ and WF₆ (5-10 mmol) were prepared by exchange with solid Cs¹⁸F at 348 K for 0.5 h in a stainless steel vessel (Hoke, 70 cm³). They were transferred by distillation to a Pyrex vessel containing activated NaF before use. [18 F]-Labelled MoF₆ (5-10 mmol) was also prepared by exchange with [18 F]-BF₃ (30 mmol) [12] at room temperature for 0.5 h. The mixture was contained in a Monel metal vessel (Hoke, 90 cm³) and BF₂¹⁸F was removed after the exchange by distillation at 195 K. [18 F]-Labelled UF₆ was prepared in a similar manner.

 $NO^{+}AsF_{\overline{6}}$ salts were prepared <u>in situ</u> from reactions between [^{18}F]-labelled PF_{5} or AsF_{5} [12] and nitrosyl fluoride [13] in MeCN. [^{18}F]-Labelled Li^{+} salts were prepared from the labelled pentafluoride and LiF as described above.

In all cases radiochemical purity was checked by determination of the $^{18}{\rm F}$ γ -ray spectrum and half-life. Specific $^{18}{\rm F}$ count rates were $>10^4$ count min $^{-1}$ mmol $^{-1}$.

[18F]-Fluorine Exchange Reactions

The fraction of [18F]-fluorine exchanged between a [18F]labelled hexafluoride and a fluoroanion in MeCN at room temperature was determined using a single 11mb Pyrex counting vessel which fitted into a well scintillation counter (Ekco and Nuclear Enterprises; well dimensions 1.56 x 0.78 ins. diameter). The counting vessel was fitted with a loop to minimise loss of involatile material during separations and a P.T.F.E., Pyrex stop cock. A quantity of the fluoroanion salt was loaded into the flamed out vessel in the glove box, and its mass determined. Solvent, MeCN (1 cm³) was added by distillation and the mass of the solution determined. A known mass of [18F]-labelled hexafluoride was then added by distillation, the mixture was warmed quickly to room temperature, 293 ± 2 K, and the reaction was allowed to proceed. Preliminary experiments with WF₅¹⁸F and PF6 salts indicated that apparent equilibrium was attained within 20 mins and this time was used in all cases. The mixture was counted during the reaction and the ¹⁸F specific count rate (count min-1 mmol-1) of the labelled hexafluoride used was also determined by counting a measured mass of MF518F in MeCN under identical conditions.

The components of the reaction mixture were separated rapidly by distillation and the ¹⁸F count rates and the masses of the solid fluoroanion salt and hexafluoride solution in MeCN determined. All counts were corrected for background and ¹⁸F decay. Radiochemical balances were >95%. Experiments in which the involatile component was initially labelled were carried out in an analogous fashion.

Difficulty was encountered in achieving rapid quantitative separations in some experiments due to the high solubilities of the Li⁺ salts. This had little effect on the precision of the ¹⁸F exchange determinations since the fraction of ¹⁸F activity exchanged (f) was determined solely from the volatile fluoride specific count rates using the relationship

$$f = S_o - S_t/S_o - S_{\infty}$$

where S_0 and S_t were the ^{18}F specific count rates (count min⁻¹ mmol⁻¹) determined for the volatile fluoride before and after the exchange and S_{∞} was the specific count rate calculated on the basis of complete exchange.

Fluoride Ion Transfer Reactions

Reactions between CsWF₇ and BF₃, PF₅, AsF₅.NCMe and SbF₅.NCMe in MeCN at room temperature were carried out in Pyrex double limb flasks equipped with Pyrex capillaries, enabling samples of the solutions to be withdrawn for Raman spectroscopy (Spex Ramalog with Ar⁺ or Kr⁺ laser sources). Solids remaining after removal of volatile material were examined by i.r. spectroscopy (PE 983, Nujol mulls between AgCl plates).

RESULTS AND DISCUSSION

There is no evidence that chemical reactions occur between the anions BF_4 , PF_6 , AsF_6 , SbF_6 , NbF_6 or TaF_6 and the hexafluorides, MoF_6 , WF_6 or UF_6 in acetonitrile at room temperature but rapid ^{18}F exchange occurs in many cases. Exchange is essentially complete between MF_5 ^{18}F , M=Mo, W and U, and the BF_4 anion, Table 1, or the PF_6 anion, Table 2, after 20 min, indicating an upper limit for the exchange half-life of ca.5 min. Exchange is complete also between PF_5 ^{18}F and PF_6 and was also demonstrated qualitatively between PF_5 ^{18}F and PF_6 . The behaviour observed is consistent with the complete ^{18}F exchange previously demonstrated between PF_4 and PF_6 in MeCN [12].

Exchange between $WF_5^{18}F$ and the NbF_6^- or TaF_6^- anions is also complete under these conditions, Table 3. The behaviour of MoF_6 and UF_6 towards these anions was not investigated but previous ^{18}F studies [14,15] strongly suggest that WF_6 is the least labile of the three hexafluorides. It is likely therefore that BF_4^- , PF_6^- , NbF_6^- and TaF_6^- should be bracketed in respect of their lability.

The AsF_6^- anion appears to be less labile with respect to ^{18}F exchange. Complete exchange occurs between AsF_6^- and $UF_5^{-18}F$ within 20 min in MeCN at room temperature but there is no observable exchange with $MoF_5^{-18}F$ or $WF_5^{-18}F$ under identical conditions, Table 4, and transfer of ^{18}F from $AsF_5^{-18}F^-$ to MoF_6 is negligible.

 $^{18}{
m F}$ Exchange reactions between ${
m LiBF}_4$ and $^{18}{
m F}$ labelled hexafluorides in acetonitrile at room temperature for 20 min

TABLE 1

Reagents			<pre>18F Specific count rate (count min⁻¹ mmol⁻¹)</pre>		Fraction ¹⁸ E exchanged	
(mmo1)		Before reaction	After reaction			
LiBF ₄ 1.02 <u>+</u> 0.03	+	MoF ₅ ¹⁸ F 0.82 <u>+</u> 0.02	26170 <u>+4</u> 51	15004 <u>+</u> 277	0.94+0.07	
LiBF ₄ 1.16 <u>+</u> 0.03	+	WF ₅ ¹⁸ F 1.08 <u>+</u> 0.01	29701 <u>+</u> 487	18328 <u>+</u> 307	0.92+0.10	
LiBF ₄ 0.86 <u>+</u> 0.03	+	WF ₅ ¹⁸ F 0.50 <u>+</u> 0.01	27692 <u>+</u> 974	12611+433	1.02+0.06	
L1BF ₄ 0.90 <u>+</u> 0.03	+	UF ₅ ¹⁸ F 0.55 <u>+</u> 0.01	99478_+1832	46272 <u>+</u> 935	1.02 <u>+</u> 0.05	
LiBF ₄ 1.21 <u>+</u> 0.03	+	UF ₅ ¹⁸ F 0.40 <u>+</u> 0.01	84275 <u>+</u> 2215	26397 <u>+</u> 728	1.03 <u>+</u> 0.05	

The SbF₆⁻ anion is the least labile of those examined since there is no observable ¹⁸F exchange with any of the hexafluorides, Table 5. The inertness of an Sb^V-F bond with respect to exchange is reflected also in the lack of observable exchange between SbF₅.NCMe and WF₅¹⁸F in MeCN at room temperature. In contrast, exchange between WF₅¹⁸F and AsF₅.NCMe under identical conditions is >80%, Table 6.

TABLE 2

 $^{18}{\rm F}$ Exchange reactions between LiPF $_6$ or NOPF $_6$ and hexafluorides in acetonitrile at room temperature for 20 min

Reage	Reagents (mmol)			¹⁸ F Specific count rate (count min ⁻¹ mmol ⁻¹)	
(m.m			Before reaction	After reaction	
L1PF ₆ 0.62±0.02	+	MoF ₅ ¹⁸ F 0.65±0.02	20204±760	9425±365	1.04±0,10
NOPF ₅ ¹⁸ F 0.80±0.02	+	MoF 6 0.98±0.02	39557±1404	15984±1515	0.97±0.08
LiPF ₆ 0.41±0.02	+	WF ₅ 18 _F 0.25±0.01	50714±1863	19883±1400	0.99±0.10 <u>a</u>
LiPF ₆ 0.41±0.02	+	WF ₅ ¹⁸ F 0.59±0.01	60504±2295	35617±1176	0.99±0.10
LiPF ₆ 0.42±0.02	+	UF ₅ ¹⁸ F 0.39±0.01	127141±4849	71574±2744	0.92±0.10
LiPF ₆ 0.42±0.02	+	UF ₅ ¹⁸ F 1.22±0.01	52230±578	37639±497	1.09±0.10

a $^{18}\mathrm{F}$ exchange between $\mathrm{LiPF}_5^{~18}\mathrm{F}$ and WF_6 in MeCN was also demonstrated qualitatively.

18 F Exchange reactions between [Cu(NCMe)₅][NbF₆]₂ or LiTaF₆ and WF₅ in acetonitrile at room temperature for 20 min

TABLE 3

Salt	WF 5 18 F	18 _F Specifi rate of WF ₅ (count min	c count Fraction 1 8 $_{ t F}$ exchanged 1 $_{ t mmo1}^{-1}$)		
(mmo1)	(mmo1)	Before reaction,	After reaction		
[Cu(NCMe) ₅][NbF ₆] ₂	1.14±0.01	34621±395	28618±169 0.93±0.	. 10	
LiTaF ₆ 0.65±0.01	1.98±0.01	13930±99	1055 7 ±1 2 0 0.98±0.	.02	

These results relate to the behaviour of the fluoroanions in situations where thermodynamic control is absent and the differences observed must be kinetic in origin. In the reactions where ¹⁸F exchange occurred the rates were too fast to be determined precisely and therefore mechanistic discussion is speculative. The simplest possibility is that ¹⁸F exchange could occur via a dissociative process (equation 1)

$$EF_{n+1}$$
 \rightleftharpoons $EF_n.NCMe + F (n = 3 \text{ or } 5)$ (1)

followed by rapid exchange involving $MF_5^{18}F$, M=Mo, W and U, and EF_n . NCMe or F. This pathway seems unlikely, at least for the AsF_6 anion, in view of the different exchange behaviour observed for AsF_5 and AsF_5 . NCMe, Tables 4 and 6.

TABLE 4

 $^{18}{\rm F}$ Exchange reactions between LiAsF $_6$ and $^{18}{\rm F}$ labelled hexafluorides in acetonitrile at room temperature for 20 min

Reagents			¹⁸ F Specific count rate (count min ⁻¹ mmol ⁻¹)		Fraction ¹⁸ Feaction exchanged	
(mmol)		Before reaction	After reaction			
LlAsF6	+	MoF ₅ 18 _F	20173+669	20866+692	0	
0.55 <u>+</u> 0.02		5 0.75 <u>+</u> 0.02	<u> </u>	20000 <u>1</u> 032	Ü	
LiAsF ₆	+	MoF ₅ 18 _F	20317 <u>+</u> 387	20404 <u>+</u> 388	0 ^a	
0.62+0.02		1.33+0.02				
LiAsF ₆	+	$\mathrm{wF}_{5}^{18}\mathrm{F}$	266967 <u>+</u> 4433	277816 <u>+</u> 6293	0	
0.39 <u>+</u> 0.02		0.47 <u>+</u> 0.01				
LiAsF ₆	+	wF ₅ ¹⁸ F	31414 <u>+</u> 787	31585 <u>+</u> 745	0	
0.51 <u>+</u> 0.02		0.75+0.01				
LiAsF ₆	+	UF ₅ 18 _F	61250 <u>+</u> 1334	33931 <u>+</u> 753	1,09+0.08	
0.48 <u>+</u> 0.02		0.70 <u>+</u> 0.01				
LiAsF ₆	+	UF ₅ 18 _F	70146+2406	34271+1188	1.00+0.08	
0.41+0.02		0.41+0.01				

In a reaction between NOAsF $_5$ ¹⁸F (0.95 \pm 0.02 mmol) and MoF $_6$ (1.19 \pm 0.02 mmol) under similar conditions < 3% of the initial ¹⁸F activity was transferred to MoF $_6$ after 20 min.

 $^{18}{
m F}$ Exchange reactions between LiSbF $_6$ and $^{18}{
m F}$ labelled hexafluorides in acetonitrile at room temperature for 20 min

TABLE 5

Reagents			18 _F Specific count rate (count min ⁻¹ mmol ⁻¹)		Fraction ¹⁸ F exchanged
(mmol)		Before Reaction	After reaction		
LiSbF ₆ 0.51 <u>+</u> 0.02		MoF ₅ ¹⁸ F 0.68 <u>+</u> 0.02	27786 <u>+</u> 636	28589 <u>+</u> 636	0
LiSbF ₆ 0.56 <u>+</u> 0.02		MoF ₅ 18 _F 0.85 <u>+</u> 0.02	26959 <u>+</u> 491	27706 <u>+</u> 504	0
LiSbF ₆ 0.51 <u>+</u> 0.02		WF ₅ 18 _F 1.68 <u>+</u> 0.01	13930 <u>+</u> 79	13399 <u>+</u> 99	0
LiSbF ₆ 0.60 <u>+</u> 0.02		WF ₅ ¹⁸ F 2.16 <u>+</u> 0.01	8588 <u>+</u> 72	9244 <u>+</u> 96	0
iSbF ₆		UF ₅ ¹⁸ F 0.85 <u>+</u> 0.01	35620 <u>+</u> 666	36263 <u>+</u> 700	0
iSbF ₆		UF ₅ ¹⁸ F 0.93 <u>+</u> 0.01	30 7 65 <u>+</u> 526	31002 <u>+</u> 674	0

Equation 1 has been postulated to account for the rapid ¹⁹F exchange within AgBF₄ in MeCN above room temperature [16] but addition of BF₃ accelerates the rate of exchange. This observation, and others made on related reactions by ¹⁹F n.m.r. spectroscopy have been taken as indicating associative mechanisms [6,16].

TABLE 6

 $^{18}{\rm F}$ Exchange reactions between pentafluoride, acetonitrile (1:1) complexes and WF $_5^{\ 18}{\rm F}$ in acetonitrile at room temperature for 20 min

WF ₅ ¹⁸ F (mmol)	18 _F Specific count rate of WF ₅ ¹⁸ F (count min ⁻¹ mmol ⁻¹) Before After reaction		Fraction ¹⁸ F exchanged	
2.11 <u>+</u> 0.01	13181 <u>+</u> 151	13350 <u>+</u> 136	0	
1.52 <u>+</u> 0.01	13181 <u>+</u> 151	13191 <u>+</u> 130	o	
1.21+0.01	34621 <u>+</u> 395	21504 <u>+</u> 226	0.89 <u>+</u> 0.04	
0.24+0.01	34621 <u>+</u> 395	14487 <u>+</u> 678	0.81+0.06	
1.49 <u>+</u> 0.01	12347 <u>+</u> 147	10 2 88 <u>+</u> 108	1.01+0.04	
1.61 <u>+</u> 0.01	12347 <u>+</u> 147	11135 <u>+</u> 106	0.92 <u>+</u> 0.05	
	(mmo1) 2.11±0.01 1.52±0.01 1.21±0.01 1.49±0.01	(mmol)	(mmol)	

TABLE 7

Species identified by vibrational spectroscopy from reaction between ${\tt CsWF}_7$ and Lewis acid fluorides in MeCN

CsWF ₇	Lewis acid fluoride	Prominent Raman bands MeCN solution	Prominent i.r. bands solid mixture	
(mmol)	(mmol)	(Δ7/cm ⁻¹)	(%/cm ⁻¹)	
0.875	0.52 (BF ₃)	775 (1 WF ₆)	1100-1035,br,(\(\sigma_3\)BF_4	
		712 (\(\sigma_1\) \(\widetilde{\pi}_7\)	773 (v BF ₄)	
			630 (v ₃ WF ₇) 530 (v ₄ BF ₄)	
0.75	0.86 (PF ₅)	775 (^v 1 WF ₆)	830 (v ₃ PF ₆	
	. 5.	746 (\(\frac{1}{1}\) PF_6\(^{-}\))	560 (\(\lambda \) PF_6)	
		708 (1 WF ₇)		
1.10	0.75 (AsF ₅)	777 (1 WF ₆)		
		714 (V 1 WF ₇ -)	715 (WF ₇)	
		684 (ASF)	689 (1 AsF 6	
0.59	0.95 (SbF ₅) b	777 (v ₁ WF ₆)	655 (_{V 3} SbF ₆	
		660 (\) 1 SbF ₆ -)		

a Raman spectrum.

b Added as SbF₅.NCMe.

We prefer the hypothesis that the ^{18}F behaviour observed is a result of processes described by equation 2.

$$EF_{n+1}^{-} + MF_{6} \rightleftharpoons [EF_{n}^{-}F-MF_{6}]^{-} \rightleftharpoons EF_{n}.NCMe + MF_{7}^{-}$$

$$(n = 3 \text{ or } 5)$$

Transfer of fluorine occurs via the transition state or short-lived intermediate, $[EF_n-F-MF_6]^-$. Equation 2 is thermodynamically favoured from right to left as F^- ion transfer from WF_7^- to EF_n . NCMe, $EF_n = BF_3$, PF_5 , AsF_5 and SbF_5 , occurs on mixing the reagents at room temperature, Table 7. Rapid ^{19}F exchange between WF_7^- and WF_6 in MeCN also occurs at room temperature [17].

Lattice energy calculations involving anions derived from BF_3 [18], PF_5 and AsF_5 [19] and ion cyclotron resonance spectroscopic studies of reactions involving WF_6 [20] and UF_6 [21] lead to the order of Lewis acidity

$$AsF_5>PF_5>BF_3>WF_6>UF_6$$

and thermochemical comparisons between SbF_5 and AsF_5 are consistent with the former being the stronger Lewis acid [22]. Fluoride ion transfer from WF_7 to SbF_5 .NCMe, AsF_5 .NCMe, PF_5 .NCMe and BF_3 .NCMe is to be expected, since MeCN is a very weak ligand and easily displaced. The very sensitive ^{18}F tracer method is required to observe fluorine transfer in the reverse, energetically unfavourable direction. It is interesting that ^{18}F exchange involving WF_6 is observed only with the stronger conjugate base anions, BF_4 and PF_6 but this correlation is probably fortuitous, since there is no a priori connection

between kinetic and thermodynamic aspects of fluorine transfer. Exchange between ${\rm AsF_6}^-$ and ${\rm UF_5}^{18}{\rm F}$ would not have been predicted on this basis.

What has been established is that in a situation where a kinetically inert anion is required, SbF_6^- , or AsF_6^- as an alternative, should be used rather than the BF_4^- or PF_6^- anions. It has been suggested very recently from evidence that is very different to that used here, that SbF_6^- is superior to BF_4^- or PF_6^- as a counter anion for reactive, Lewis acid organometallic cations [23].

ACKNOWLEDGEMENTS

We thank the staff at the Scottish Universities Research and Reactor Centre, East Kilbride for assistance with ¹⁸F preparation, British Nuclear Fuels plc for UF₆ and the Government of Algeria for a postgraduate scholarship to M.F.G.

REFERENCES

- 1 Presented in part at the 12th International Symposium on Fluorine Chemistry, University of Santa Cruz, Ca., 1988.
- Part XIII, L. Rowley, G. Webb, J.M. Winfield and A. McCulloch, Appl. Catal., 52 (1989) 69.
- 3 H.R.Clark and M.M. Jones, J.Am.Chem.Soc., 92 (1970) 816.
- 4 e.g. J. Reedijk, Comments Inorg. Chem., 1 (1982) 379; F.J. Rietmeiier, R.A.G. de Graaff and J. Reedijk, Inorg. Chem., 23 (1984) 151; W. Vreugdenhil, P.J.M.W.L. Birker R.W.M. ten Hoedt, G.C. Verschoor and J. Reedijk, J. Chem. Soc. Dalton Trans. (1984) 429; A.R. Bassindale and T.Stout, Tetrahedron Lett., 25 (1984) 1631.

- e.g. S.J. Thompson, P.M. Bailey, C. White and P.M.Maitlis, Angew. Chem., Int. Ed. Engl., 15 (1976) 490; F.L. Wimmer and M.R. Snow, Aust. J. Chem. 31 (1978) 267; D.W. Bruce, R.F. Jones and D.J. Cole-Hamilton, J.Chem. Soc. Dalton Trans. (1984) 2249; B.J. Thomas, J.F. Mitchell, K.H. Theopold and J.A. Leary, J. Organomet Chem. 348 (1988) 333; G. Douglas, M.C. Jennings, L. Manojlović-Muir, K.W. Muir and R.J. Puddephatt, J. Chem. Soc. Chem. Commun. (1989) 159.
- 6 e.g. S. Brownstein, Can. J. Chem., <u>47</u> (1969) 605;
 J.Inorg. Nucl. Chem., <u>35</u> (1973) 3567 and refs. therein.
- 7 J.M. Winfield, J. Fluorine Chem., 25 (1984) 91.
- 8 J.C. Fuggle, D.W.A.Sharp and J.M. Winfield, J. Fluorine Chem. <u>1</u> (1971/72) 427; D.M. Byler and D.F. Shriver, Inorg. Chem., <u>12</u> (1973) 1412; Inorg. Chem., <u>13</u> (1974) 2697.
- N.N. Greenwood, J. Chem. Soc., (1959) 3811; G.M. Begun and A.C. Rutenberg, Inorg. Chem., <u>6</u> (1967) 2212;
 A.M. Heyns and C.W.F.T. Pistorius, Spectrochim Acta,
 Part A, <u>30</u> (1974) 99; <u>31</u> (1975) 1293; O.L. Keller, jun. and A. Chetham-Strode, jun., Inorg. Chem., 5 (1966) 367.
- 10 A.C. Baxter, J.H. Cameron, A. McAuley, F.M. McLaren and J.M. Winfield, J. Fluorine Chem., 10 (1977) 289.
- A. Beuter, W. Kuhlmann and W. Sawodny, J. Fluorine Chem., 6 (1975) 367.
- 12 K.W. Dixon and J.M. Winfield, J. Chem. Soc., Dalton Trans (1989) 937.
- 13 C.T.Ratcliffe and J.M.Shreeve, Inorg. Synth, 11 (1968) 194.
- 14 R.T.Poole and J.M.Winfield, J.Chem.Soc., Dalton Trans., (1976) 1557.
- D.K. Sanyal and J.M. Winfield, J.Fluorine Chem., 24, (1984) 75.

- 16 R.J. Gillespie, J.S. Hartman and M. Parekh, Can. J. Chem.,46 (1968) 1601.
- 17 A. Prescott, D.W.A. Sharp and J.M. Winfield, J. Chem. Soc Dalton Trans. (1975) 934.
- 18 T.E. Mallouk, G.L. Rosenthal, G. Müller, R. Brusasco and N. Bartlett, Inorg. Chem., 23 (1984) 3167.
- 19 Values for the F⁻ ion affinities of PF₅ and AsF₅ quoted in ref. 18
- 20 P.M. George and J.L. Beauchamp, Chem. Phys., <u>36</u> (1979) 345.
- 21 J.L. Beauchamp, J. Chem. Phys., 64 (1976) 718.
- N. Bartlett and B.W. McQuillan, 'Intercalation Chemistry' M.S. Whittingham and A.J. Jacobson (eds.), Academic Press, New York and London (1982) ch 2, p.19.
- 23 R.V. Honeychuck and W.H. Hersh, Inorg. Chem., <u>28</u> (1989)
 2869; J.Am.Chem.Soc., <u>111</u> (1989) 6056.